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The thermal shock resistance of brittle materials such as glass and ceramics is one of their 
weaknesses. Pores and other incorporated second phases in these materials alter these 
properties which are decisive for thermal shock behaviour, and may therefore increase this 
behaviour in a precalculable manner. It has been theoretically demonstrated when and why 
porosity leads to an improvement in thermal shock resistance. The thermal shock resistance 
for porous borosilicate sintered glass and porous eutectic calcium titanate ceramic have 
been calculated and compared to experimental values. The results confirm that low 
porosities lead to an improvement in thermal shock resistance, that the thermal shock 
resistance has a maximum at a certain porosity, and that above certain porosities, the 
presence of pores deteriorates the thermal shock resistance. If porous materials are 
considered as a special case of composite materials, then relations valid for porous materials 
can be transferred to composite materials and vice versa ("composite concept"). This has 
been investigated using the examples of borosilicate sintered glass with incorporated 
antimony particles and eutectic calcium titanate ceramic with incorporated paladium 
particles, in the case of the glass-antimony composite material, improvements in thermal 
shock resistance of about 15% with 10 vol% antimony incorporation, were calculated and 
confirmed experimentally, while for calcium titanate-palladium composite materials, a 15% 
improvement in thermal shock resistance was already achieved with about 5 vol % metallic 
phase. 

1. Introduction 
The thermal shock behaviour, RTS, of brittle materials 
such as glass and ceramics, is one of the weak points of 
these materials. It depends on their rupture strength, 
Rm, modulus of elasticity, E, and Poisson's ratio, v, as 
well as on their thermal expansion coefficient, ~, and 
their thermal conductivity, X, according to the follow- 
ing equation [1] 

XRm(1 RTS - ~ -- v) (1) 

The background for this equation is the calculation of 
stresses caused by the temperature gradient, AT, be- 
tween the surface and centre of a specimen being 
quenched or heated rapidly (Fig. 1). That stress de- 
pends on the cited properties and becomes equal to 

the rupture strength (or = Rm) , if a certain critical 
temperature gradient exists (ATcrit = Rrs). 

The different material properties enter into the 
equation with different weights depending on the ex- 
perimental boundary conditions. A differentiation is 
therefore made between thermal shock resistances 
("thermal stress resistance parameters") of the first, 
second and higher order [2-13] which either assume 
only spontaneous elastic behaviour of the material 
(thermal shock resistances of the first and s e c o n d  
order) or take into consideration viscoelastic behav- 
iour (thermal shock resistances of the third and fourth 
order), as well as plastic deformation, fracture mech- 
anical and fracture statistical approaches (thermal 
shock resistances of the fifth, sixth and seventh order). 
The assumption of how rapidily the heat transfer from 
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Figure 1 Stresses development under thermal shock conditions. 

the material to the environment takes place under 
thermal shock conditions is of central significance 
for the weighting of the individual properties in 
Equation 1. This, once again, determines the temper- 
ature gradient that the material has to tolerate with- 
out cracking and which, with a finite heat transfer, 
corresponds directly to the thermal shock resistance of 
the second order [1, 14] 

R~s 2 ~ ArKrit = C ~ ( 1 - v )  (2) 

The proportionality constant, C, is valid for certain 
specimen geometries and has the dimension mK W - 1. 
As demonstrated by a comparative criticism of the 
thermal shock resistance of various orders [ 15], due to 
the indeterminacy of the actual heat transfer in the 
experiment and the (associated) neglection of the tem- 
perature dependence of the property term in Equation 
2, these resistances remain so inexact that for further 
considerations of the thermal shock resistance of 
brittle materials, it is sufficient here to restrict the 
consideration to those of the second order according 
to Equation 2. 

2. The thermal shock behaviour of porous 
brittle materials 

As a rule, ceramic materials are produced by powder 
technology and thus contain sintering pores. Since the 
beginning of the century, contradictory statements have 
been made about their influence on thermal shock 
resistance so that both an improvement and also a de- 
terioration in thermal shock resistance has been dem- 
onstrated by porosity [16-19]. Only the introduction 
of porosity-dependent property terms in Equation 2 en- 
abled a theoretical representation of the thermal shock 
resistance as a porosity function, and thus the demon- 
stration that low porosities must lead to an improve- 
ment in thermal shock resistance whereas larger por- 
osities lead to a deterioration [18, 19]. The thermal 
shock resistance of second order for porous materials 
is obtained from Equation 2 if the individual property 
terms are substituted as the porosity functions 

XpRmp 1 Rrs-ap = C ~ (  - v p )  (3) 

The experimental determination of these porosity 
functions for porous glass and porous calcium titanate 
ceramic and their comparison with theoretical values 
was the subject of a previous report [15] where, due to 
a lack of knowledge, the influence of the Poisson's 
ratio as a porosity function in a first approximation 
had to be neglected. In the meantime, this influence 
has been derived and confirmed experimentally 
[20, 21] and will be reported here. 

An extensive analysis of the literature has revealed 
that only a few contributions have dealt with the 
porosity dependence of the Poisson's ratio. On the one 
hand, it has been classified as negligibly small [22], 
although on the other hand, this has not been con- 
firmed by experimental results, primarily for porous 
ceramic materials [23]. The theoretical statements 
were either not compared with experimental values 
[24-26] or else a comparison revealed that the cal- 
culated Poisson's ratios were about 30% higher than 
the measured values [27]. In order to derive a rela- 
tionship between the Poisson's ratio and porosity, P, 
of isotropic, porous materials, the relation known 
from the elasticity theory is assumed 

E 
v = 0 . 5 - -  (4) 

6K 

where E is the modulus of elasticity, and K the bulk 
modulus (cf. e.g. [28]). 

The porosity dependence of the modulus of elastic- 
ity has already been dealt with and theroretically 
explored in more depth [29, 30]. The comparison be- 
tween measured and calculated values has similarly 
been implemente d for porous calcium titanate ceramic 
and porous borosilicate glass [15]. Fig. 2 shows, as an 
example, this comparison for normalized values, i.e. 
relative to the modulus of elasticity of borosilicate 
glass without pores, for (quasi-)spherical porosity. 
Corresponding comparisons have, in the meantime, 
also lead to a satisfactory agreement for other porous 
materials [31-33]. The materials treated here 
(borosilicate glass and calcium titanate ceramic) had 
isometric, i.e. quasispherical, porosity, as reported 
earlier [15]. Therefore, further discussion will be 
restricted to this case. However, attention is explicitly 
drawn to the fact that the available general equa- 
tions on conductivity, thermal expansion, modulus of 
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Figure 2 Modulus of elasticity and spherical porosity for porous 
borosilicate glass: ( x ) measured data [15], ) calculated curve, 
Equation 5. 

elasticity or rupture strength permit a treatment of all 
other pore structures, i.e. forms and orientations such 
as directional pore channels or flattened pores similar 
to microcracks [31, 34 37]. 

The equation valid for the modulus of elasticity in 
the case of spherical porosity is [30] 

Ep = Eo(1 - -  p2/3)1.21 (5) 

where E0 is the modulus of elasticity of the material 
without pores. Equation 5 was used to calculate the 
theoretical curve in Fig. 2. Equations on the porosity 
dependence are also available for the bulk modulus of 
porous materials, Kp [34, 35]. Of these equations, two 
practical relevant cases have a mathematically clear 
form, i.e. that for spherical porosity and that for cylin- 
drical porosity. The equation for spherical porosity 
and low volume fraction of porosity has the following 
form 

2(1 - 2Vo)(3 -- 5P)(1 - P) 
Kp, 1 = K0 (6) 

2(3 -- 5P)(1 - 2Vo) + 3P(1 + Vo) 

The subscript 0 always indicates the material without 
pores. Equation 5 has two zeros (P = 0.6; P = 1) and 
is therefore only valid to a limited extent as an adequate 
approximation (0 ~< P ~< 0.5). A different equation; sim- 
ilarly only with limited validity, has been derived by 
other authors for higher porosities (0.5 < P ~<1) 
[38, 39] 

2 (1 - 2Vo)(1 - P) 
Kp, 2 = Ko3 ( 1 - V o )  (7) 

In order to obtain a single equation for the whole 
porosity range, a "mathematical joint" of both 

Equations 6 and 7 has been proposed [21], where the 
following function has been used in order to obtain 
the endeavoured approximation 

1 
s = 1 + e -1°°(P-°'4) (8) 

On this basis the new approach for the porosity de- 
pendence of the bulk modulus can be written as 

Kp = (1 - s)Kp. 1 + sKp,2 (9) 

This equation has been compared with experimental 
data for porous sintered glass and sintered perlite 
containing a wide range of porosities [21] and suffi- 
cient agreement between theory and experiment was 
found in the frame of an engineering approach. 

If the compression and Young's moduli in Equation 
4 are replaced by their porosity functions according to 
Equations 5 and 9 for spherical porosity then the 
porosity function of the Poisson's ratio of isotropic 
porous materials with spherical pores is obtained 

Vp = 0 .5--{(1 _p2/3)1.21/ 
(3 -- 5P)(1 -- P) 

4 (1 - s) 2(3 -- 5P)(1 - 2Vo) + 3P(1 + Vo) 

- P )  

+ s 3(1 - ~o) (10) 

This equation represents a better solution for the 
dependence of the Poisson's ratio on porosity than 
earlier proposed equations [36, 40], which were only 
valid for a limited range of porosity. 

Equation 10 provides the plausible result for the 
borderline case of a material without pores: P = 0; 
vp = Vo (note that for P = 0s ~ 0, Equation 8) and 
thus it fulfils the most necessary borderline case condi- 
tion. 

The low-porosity range of Equation 10 has been 
experimentally confirmed by comprehensive compari- 
son of calculated and measured values [20 , 40] and by 
comparison with other theories [36]. There is less 
published experimental work on Poisson's ratio 
porosity dependence for the high-porosity range. 
Therefore, the comparison of Equation 10 with experi- 
mental data for this case has been rather limited [21]. 

Turning again to the thermal shock resistance 
dependence on porosity, the other property terms 
required for its determination for the case of spherical 
porosity according to Equation 3, are already known 
[19,30, 31,36,41]  

Xp 

Rmp 

= ;Lo( 1 _ p)s/2 (11) 

~P = ~0  (12) 

= Rmo(1 - p)2 (13) 

The designations correspond to those in Equation 1, 
the index P characterizes the porous material and the 
index 0 the material without pores. Substituting now 
the properties in Equation 3 by their porosity func- 
tions for spherical porosity (Equations 5, 10 and 
11 13) and normalizing for the pore-free material, the 
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Figure 3 Thermal shock resistance and spherical porosity of 
borosilicate glass: (Q, +, x, ~) measured data for different 
quenching rates [151, ( ) theoretical curve, Equation 14. 

porosity dependence of the relative thermal shock 
resistance can be obtained 

RTS_2P )~pRmvEo(1 -- Vp) 

RTS- 20 )~oRmo Ep(1 --V0) 
( ] 4 )  

Fig. 3 shows the comparison of experimental and 
calculated values by means of Equation 14 for the 
relative thermal shock resistance of borosilicate glass 
containing quasispherical pores. Fig. 4 shows the 
same comparison for eutectic calcium titanate ceramic 
with spherical porosity. The experimental values [15] 
were normalized with the data for the pore-free mater- 
ial. Despite the considerable scattering of the meas- 
ured values and although they cannot be related 
definitely to the theoretical quantities, the course in 
both cases (calculated curve and experimental results) 
has the same tendency and may therefore serve as 
a first confirmation of the approach. 

As the theory shows [37], if one considers porosities 
other than spherical, the following magnitudes depend 
on the porosity structure, particularly on the shape 
and orientation of the pores: 

(a) the level of the maximum thermal shock resist- 
ance achievable by the porosity; 

(b) the porosity at which this maximum occurs; 
(c) the porosity above which the thermal shock 

resistance deteriorates. 
Thus, for example, according to calculations 

quasicylindrical pores (prolate spheroids) with a length- 
to-diameter ratio of about  20 to 1 and randomly 
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Figure 4 Thermal shock resistance and spherical porosity of eutec- 
tic calcium titanate ceramic: (O, +, x, A) measured data for differ- 
ent quenching rates [15], ( ) theoretical curve, Equation 14. 

oriented through the material, would lead one to ex- 
pect a 10%-20% increase in thermal shock resistance, 
whereas values of more than 5% cannot, in principle, 
be achieved for an increase in thermal shock resistance 
with "lenticular pores" (oblate spheroids) [37]. 

Finally, a quantitative assessment of the influence of 
the Poisson's ratio on the thermal shock resistance as 
considered here, in contrast to previous studies 
E15,19, 42], indicated that in the case of porous eutec- 
tic calcium titanate this consideration led to theoret- 
ical values in the range of the maximum thermal shock 
resistance which were only about  2% lower than those 
without considering the Poisson's ratio effect. Fur- 
thermore, with a porosity of more than 30 vol%, the 
values calculated considering the Poisson's ratio effect 
were only about 10% above those achieved when 
a consideration of this influence was neglected in the 
calculation. 

3. T h e  t h e r m a l  s h o c k  r e s i s t a n c e  of  
t w o - p h a s e  c o m p o s i t e  m a t e r i a l s  

Based on the knowledge of the influence of porosity 
on the thermal shock resistance of glass and ceramic, 
an attempt was made to improve the thermal .shock 
resistance by incorporating suitable metallic phases 
into a borosilicate glass and a eutectic calcium titanate 
ceramic matrix. In general terms, this objective corres- 
ponds to the ductilization of brittle materials under 
thermal shock conditions by means of the "composite 



concept". The composite material concept starts from 
multiphase materials with phases with quite different 
properties but which adhere to each other as sche- 
matically shown in Fig. 5. Basically this concept 
considers the relationships between properties and 
microstructure for multiphase materials in general, 
but uses composites in order to verify theoretical 
results by experimental values. If the phase properties 
are similar, then the corresponding functions follow 
for multiphase materials whose phases belong to the 
same group of materials (cf. Fig. 6). In contrast, if 
the phase properties are extremely dissimilar, then the 
equations for the porous material must follow, i.e. 
those for the relationship between the porosity, the 
pore structure and the effective properties of a porous 
material. If, as in the present case, such equations are 
already available, then analogous functions should 
also be available or derivable for the two-phase com- 
posite material, leading to its microstructure-property 
correlations. 

Two composite systems wilt be analysed in this 
study according to the previous experimental work 
[15]: a borosilicate glass with quasispherical inclu- 
sions of antimony and a eutectic calcium titanate 
ceramic with quasispherical palladium inclusions. 
Therefore, for the treatment of interest here concern- 
ing the thermal shock resistance of these composites, 
the corresponding microstructure property correla- 
tion for the properties included in Equation 3, 

I Multiphase 
materials 

Phase properties Phase properties 
similar different 

- ceramics, glasses Composites 
- metals (alloys) 
- polymers (blends) 

Phase properties 
extremely different 

Porous materials 
(sintered materials 

Figure 5 Composite concept and porous material. 

Figure 6 Subdivision of material groups. 

(thermal conductivity, thermal expansion coefficient, 
rupture strength, Young's modulus of elasticity, and 
Poisson's ratio) are needed. 

After the "state of the art" of the microstructure- 
property correlations for composite materials, these 
properties can be given as a function of the corres- 
ponding properties of the constituting phases and of 
the microstructural features for quasispherical shape 
of the metal phases incorporated in the glass or ce- 
ramic matrix phases. The following equations were 
taken from the literature and verified with respect to 
their general validity or experimental "reliability" 
[29 33, 36, 41] 

01} -1 

1)]} 
,04C M 

A = 2.598c~ 2/3 

B = 1.612CD1/3 

(1 - CD) - ;% _ XM \ ;Lc j (16) 

Ec  
Rmc = R m i v l - -  

EM 

~c  = U M + ( % - - ~ M )  

(17) 

F3(1 -_ CD)(1 -- 2VM) 
Kc = LE M + 4Gc(1 --2VMM) 

3CD(1 ~2VD) ] 1 4 
+ Eo + 4Gc(1 - 2vD)J - 5 Gc 

where CD is the volume percentage of the included 
phase; M, D and C indicate matrix, included phase 
and composite material. 

As in the case of porous material, no relationship 
has yet been established between the Poisson's ratio of 
the two-phase isotropic composite material and its 
microstructure. In order to derive this relationship, 
once again Equation 4, known from the elasticity 
theory, is used and accordingly requires the depend- 
ence of the effective elasticity modulus, Eo and the 
effective compression modulus, Ko of a two-phase 
isotropic composite material as a function of the cor- 
responding phase properties and the constitutive 
microstructure for the quasispherical shape of the 
included phase. 

The modulus of elasticity is given by Equation 15 
and the following equation is valid for the bulk 
modulus of two-phase isotropic composite materials 
with quasispherical inclusions in lower concentration 
( <30 vol %) [15, 34] 

(19) 
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with 

Gc 
EM(3 - 5CD) ED(2 -- 5CD) 

z 

12(1 + VM) 12(1 + VD) 

EDEM FEM(3- 5CD) 
+ -6(1 + vD)(1 + VM) + k 12(1 + VM) 

12(1 +V~D)-_J J (20) 

If Equations 15, 19 and 20 are now substituted in 
Equation 4, then the dependence of the Poisson's ratio 
of a two-phase isotropic composite material on its 
phase properties is obtained for spherical shape of the 
included phase which, according to Equation 4, is as 
follows in the general form 

Ec 
Vc = 0 . 5 - - -  (21) 

6Kc 

The detailed notation of the equation no longer has 
a clear mathematical form; for this reason a graphical 
representation is given in Fig. 7 and compared with 
experimental values from the literature [43]. As the 
comparison shows~ the calculated curve is satisfactor- 
ily confirmed by the experimental values. 

With Equations 15, 16, 17 and 21 as well as 18, 19 
and 20, respectively, all terms necessary to calculate 
the normalized thermal shock resistance (second 
order) for two-phase isotropic materials with a quasis- 
pherical included phase are available 

RTSB - C2 Lc ~M Rmc EM (1 -- Vc) 
- ( 2 2 )  

RTSB C M  )~M~cRmMEc( 1 - -  V M )  

Such composite materials, with borosilicate glass 
matrix phase and quasispherical antimony inclusions, 
and with eutectic calcium titanate matrix phase and 
quasispherical palladium inclusions, were fabricated 
by powder technology and quantitatively character- 
ized by microstructural analysis [-153. The thermal 
expansion coefficients, thermal conductivities, moduli 
of elasticity and rupture strengths of composites with 
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Figure 7 The Poisson's ratio of glass matrix composite materials 
(calcium aluminium phosphate glass) with quasispherical metal 
incorporations (cobalt-chromium 788): (11) measured data [-43], 
( ) calculated values. 
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different volume fractions of inclusions were meas- 
ured. All groups of composite materials were porous, 
the porosity being restricted to the brittle matrix 
phases [15]. Thus, in this case, two types of inclusions, 
namely porosity and metallic particles, are present in 
the composites. 

For carrying out the analysis of the data correctly 
and in order to permit a comparison with theoretical 
values, the experimental data should be transformed 
to values corresponding to the non-porous matrix, 
which was possible by using Equations 5, 6, 10, 11 or 
13, for example. 

The theoretical values of the different properties for 
the composite material can then be calculated by 
means of Equations 15-22 as a function of the volume 
fraction of the included phase (in this case metal 
particles). As an example of this procedure, the ex- 
perimental and theoretical values for the thermal con- 
ductivity of porous composite materials are shown in 
Fig. 8. An excellent agreement is found for both 
borosilicate glass matrix composites and eutectic cal- 
cium titanate ceramic matrix composites. 

For the thermal shock resistance of composite ma- 
terials containing pores, the same procedure was fol- 
lowed. The experimental values given as the critical 
temperature difference [15] were converted to pore- 
free matrix values as explained above. The theoretical 
values of the thermal shock resistance of the two- 
phase composite materials were determined according 
to Equation 22. In Figs 9 and 10 the normalized 
measured data are compared with the normalized 
calculated thermal shock resistances for the composite 
materials investigated here, demonstrating sufficient 
agreement in the frame of an engineering approach 
and confirming that the precalculated improvement of 
the thermal shock resistance of glass and ceramics by 
metal inclusions can be achieved. 
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Figure 8 Thermal conductivity of the composite materials investi- 
gated, corrected for pore-free matrix measured data [15]: ((3) 
borosilicate glass matrix with antimony inclusions, (D) eutectic 
calcium titanate matrix with palladium inclusions, ( ) theoretical 
curves, Equation 16. 
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